Naunton Park Primary School Calculation Policy

EYFS Page 2
Split into ages
Key Stage 1 (Years 1 to 3)
Addition Page 5
Subtraction Page 7
Multiplication Page 9
Division Page 11
Key Stage 2 (Years 3 to 6)
Addition Page 6
Subtraction Page 8
Multiplication Page 10
Division Page 12

40-60+ months		Positive relationships - what adults could do
Number names, counting using touch and move, counting nonmoveable items	Recognise some numerals of personal significance. - Recognises numerals 1 to 5 . - Counts up to three or four objects by saying one number name for each item. - Counts actions or objects which cannot be moved. - Counts objects to 10, and beginning to count beyond 10 . - Counts out up to six objects from a larger group. Selects the correct numeral to represent 1 to 5 , then 1 to 10 objects. - Counts an irregular arrangement of up to ten objects.	- Encourage use of mathematical language, e.g. number names to ten: ‘Have you got enough to give me three?’ - Add numerals to all areas of learning and development, e.g. to a display of a favourite story, such as ‘The Three Billy Goats Gruff. 3 Little Pigs, Goldilocks and the 3 bears, 10 Little Labybirds, Winnie the Pooh tells the time, The Bad Tempered Ladybird, The Hungry Caterpillar, Owl Babies. Make books about numbers that have meaning for the child such as favourite numbers, birth dates or telephone numbers. -Use rhymes, songs and stories involving counting on and counting back in ones, twos, fives and tens. 2's = Mary at the garden gate, 2, $4,6,8$, eating cherries off a plate, $2,4,6,8.1,2$, buckle my shoe).
Estimation, language more and fewer, finding one more/less	-Estimates how many objects they can see and checks by counting them. - Uses the language of 'more' and 'fewer' to compare two sets of objects. - Finds the total number of items in two groups by counting all of them. - Says the number that is one more than a given number. - Finds one more or one less from a group of up to five objects, then ten objects.	Ensure that children are involved in making displays, e.g. making their own pictograms of lunch choices. Develop this as a 3D representation using bricks and discuss the most popular choices. - Encourage estimation, e.g. estimate how many sandwiches to make for the picnic. Use the appropriate mathematical language add, take-away, more, less, makes, altogether. - Emphasise the empty set and introduce the concept of nothing or zero. - Show interest in how children solve problems and value their different solutions. - Make sure children are secure about the order of numbers before
Use of language add, and, makes, altogether	- In practical activities and discussion, beginning to use the vocabulary involved in adding and subtracting.	- Discuss with children how problems relate to others they have met, and their different solutions. -Talk about the methods children use to answer a problem they have posed, e.g. 'Get one more, and then we will both have two.' - Encourage children to make up their own story problems for other children to solve. Addition -1 more, 2 more, 2 digits making a different total each time, 2 numbers and the total remaining the same (dominoes, dices, playing cards, beanies and hoops etc). Subtraction - number with the most value first and least value second, same starting number - taking away different quantities (buckets, animals in farm field, hoops etc), using resources to make oral calculations. -Encourage children to extend problems, e.g. "Suppose there were three people to share the bricks between instead of two". Using resources alongside language to challenge ideas and mathematical thinking. Including doubling, halving and sharing items between different numbers of people.
Recording own ideas and solving problems	-Records, using marks that they can interpret and explain. -Begins to identify own mathematical problems based on own interests and fascinations.	- Use mathematical vocabulary and demonstrate methods of recording, using standard notation where appropriate. Supporting the mathematical language that children use and understand orally with correctly formed digits and symbols. \bullet Give children learning English as additional language opportunities to work in their home language.

Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer.

They solve problems, including doubling, halving and sharing.

7 (

	YEAR 1	YEAR2	YEAR 3
	$t=$ signs and missing numbers Children need to understand the concept of equality before using the ' x ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'. $2=1+1$ $2+3=4+1$ Missing numbers need to be placed in all possible places. $\begin{array}{ll}3+4=\square & \square=3+4 \\ 3+\square=7 & 7=\square+4\end{array}$ Counting and Combining sets of Objects Combining two sets of objects (aggregation) which will progress onto adding on to a set (augmentation)	$\text { Missing number problems e.g } 14+5=10+\square \quad 32+\square+\square=100 \quad 35=1+\square$ $+5$ It is valuable to use a range of representations (also see Y 1). Continue to use numberlines to develop understanding of: Counting on in tens and ones $\begin{aligned} 23+12 & =23+10+2 \\ & =33+2 \\ & =35 \end{aligned}$ Partitioning and bridging through 10. The steps in addition often bridge through a multiple of 10 e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5. $8+7=15$	Missing number problems using a range of equations as in Year 1 and 2 but with appropriate, larger numbers. Partition into tens and ones Partition both numbers and recombine. Count on by partitioning the second number only e.g. $247+125=247+100+20+5$ $\begin{aligned} & =347+20+5 \\ & =367+5 \\ & =372 \end{aligned}$ Children need to be secure adding multiples of 100 and 10 to any three-digit number including those that are not multiples of 10 . Towards a Written Method Introduce expanded column addition modelled with place value counters (Dienes could be used for those who need a less abstract representation)
	Understanding of counting on with a numbertrack: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Understanding of counting on with a numberline (supported by models and images).	Adding 9 or 11 by adding 10 and adjusting by 1 e.g. Add 9 by adding 10 and adjusting by 1 $35+9=44$	$\begin{array}{r} 247 \\ +125 \\ \hline 12 \\ 60 \\ \frac{300}{372} \end{array}$ Leading to children understanding the exchange between tens and ones.
		Towards a Written Method Partitioning in different ways and recombine Leading to exchanging: 72 Expanded written method $40+20+7+5=$ $60+12=72$	 Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method. $\begin{array}{r} 247 \\ +125 \\ \hline 372 \\ \hline \end{array}$ PLEASE NOTE THE LOCATION OF CARRIED NUMBER
Things to be able to do in your head, with jottings or using manipulables	Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $3+$ $=7$	Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: >a two digit number and ones; >a two digit number and tens; >two two digit numbers; >adding three one digit numbers.	Add and subtract numbers mentally, including: >a three digit number and ones (e.g. 345-8); >a three digit number and tens (e.g. $345-30,345-50$); >a three digit number and hundreds (e.g. 345 - 200).
Things to know From regular practice	Represent and use number bonds and related subtraction facts within 20. Add and subtract one digit and two digit numbers to 20 , including zero.	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 .	tract any multiple of ten or five from 100.
Mental advice and guidance	Mental Strategies (addition and subtraction) Children should experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10 . Children should memorise and reason with number bonds for numbers to 20, experiencing the $=$ sign in different positions. They should see addition and subtraction as related operations. E.g. $7+3=10$ is related to $10-3=7$, understanding of which could be supported by an image like this. Use bundles of straws and Dienes to model partitioning teen numbers into tens and ones and develop understanding of place value. Children have opportunities to explore partitioning numbers in different ways. e.g. $7=6+1,7=5+2,7=4+3=$ Children should begin to understand addition as combining groups and counting on. Vocabulary Addition, add, forwards, put together, more than, total, altogether, distance between, difference between, equals = same as, most, pattern, odd, even, digit, counting on. Generalisations - True or false? Addition makes numbers bigger. - True or false? You can add numbers in any order and still get the same answer. (Links between addition and subtraction) When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions. Some Key Questions How many altogether? How many more to make...? I add ...more. What is the total? How many more is... than...? How much more is...? One more, two more, ten more... What can you see here? Is this true or false? What is the same? What is different?	Mental Strategies Children should count regularly, on and back, in steps of 2,3,5 and 10. Counting forwards in tens from any number should lead to adding multiples of 10 . Number lines should continue to be an important image to support mathematical thinking, for example to model how to add 9 by adding 10 and adjusting. Children should practise addition to 20 to become increasingly fluent. They should use the facts they know to derive others, e.g using $7+3=10$ to find $17+3=20$, $70+30=100$ They should use concrete objects such as bead strings and number lines to explore missing numbers $-45+\ldots=50$. As well as number lines, 100 squares could be used to explore patterns in calculations such as $74+11,77+9$ encouraging children to think about 'What do you notice?' where partitioning or adjusting is used. Children should learn to check their calculations, by using the inverse. They should continue to see addition as both combining groups and counting on. They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=20+3=10+13$. Vocabulary +, add, addition, more, plus, make, sum, total, altogether, how many more to make...? how many more is... than...? how much more is...? $=$, equals, sign, is the same as, Tens, ones, partition Near multiple of 10, tens boundary, More than, one more, two more... ten more... one hundred more Generalisation - Noticing what happens when you count in tens (the digits in the ones column stay the same) - Odd + odd = even; odd + even = odd; etc - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this. $7+?=10$ Some Key Questions How many altogether? How many more to make...? How many more is... than...? How much more is...? Is this true or false?	Mental Strategies Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of $1 / 10$. The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged. This will help to develop children's understanding of working mentally. Children should continue to partition numbers in different ways. They should be encouraged to choose the mental strategies which are most efficient for the numbers involved, e.g. Add the nearest multiple of 10 , then adjust such as $63+29$ is the same as $63+$ 30-1; counting on by partitioning the second number only such as $72+31=72+30+1$ $=102+1=103$ Manipulatives can be used to support mental imagery and conceptual understanding. Children need to be shown how these images are related eg. What's the same? What's different? Vocabulary Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100 , inverse, rounding, column subtraction, exchange See also Y 1 and Y 2 Generalisations Noticing what happens to the digits when you count in tens and hundreds. Odd + odd = even etc (see Year 2) Inverses and related facts - develop fluency in finding related addition and subtraction facts. Develop the knowledge that the inverse relationship can be used as a checking method. Key Questions What do you notice? What patterns can you see? When comparing two methods alongside each other: What's the same? What's different? Look at this number in the formal method; can you see where it is in the expanded method / on the number line?

	YEAR 4	YEAR 5	YEAR 6
	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods (progressing to 4-digits) Expanded column addition modelled with place value counters, progressing to calculations with 4-digit numbers: $\begin{aligned} & 200+40+7 \\ & \frac{100+20+5}{300+60+12}=372 \\ & 247 \\ & +\frac{125}{12} \\ & 60 \\ & \frac{300}{372} \end{aligned}$ Compact written method Extend to numbers with at least four digits. Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty. Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits). $\begin{array}{r} 72.8 \\ +54.6 \\ \hline 127.4 \\ \hline 11 \end{array}$	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency $\text { e.g. } 12462+2300=14762$ Written methods (progressing to more than 4-digits) As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm. $\begin{array}{r} 172.83 \\ +\quad 54.68 \\ \hline 227.51 \\ \hline 111 \end{array}$ Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places Problem Solving Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.
Things to be able to do in your head, with jottings or using manipulables	Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why (bar modelling).	Add and subtract numbers mentally with increasingly large numbers.	Perform mental calculations, including with mixed operations and large numbers.
Things to know From regular practice			
Mental methods advice and guidance	Mental Strategies Children should continue to count regularly, on and back, now including multiples of $6,7,9,25$ and 1000 , and steps of $1 / 100$. The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways. They should be encouraged to choose from a range of strategies: - Counting forwards and backwards: 124-47, count back 40 from 124, then 4 to 80 , then 3 to 77 - Reordering: $28+75,75+28$ (thinking of 28 as $25+3$) - Partitioning: counting on or back: $5.6+3.7,5.6+3+0.7=8.6+0.7$ - Partitioning: bridging through multiples of 10: 6070-4987, $4987+$ $13+1000+70$ - Partitioning: compensating - $138+69,138+70-1$ - Partitioning: using 'near' doubles $-160+170$ is double 150 , then add 10 , then add 20 , or double 160 and add 10 , or double 170 and subtract 10 - Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes before 2.15 pm ? - Using known facts and place value to find related facts. Vocabulary add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as. Generalisations Investigate when re-ordering works as a strategy for subtraction. Eg. 20 -$3-10=20-10-3$, but 3-20-10 would give a different answer. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?	Mental Strategies Children should continue to count regularly, on and back, now including steps of powers of 10 . The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways. They should be encouraged to choose from a range of strategies: - Counting forwards and backwards in tenths and hundredths: 1.7 + 0.55 - Reordering: $4.7+5.6-0.7,4.7-0.7+5.6=4+5.6$ - Partitioning: counting on or back $-540+280,540+200+80$ - Partitioning: bridging through multiples of 10 : - Partitioning: compensating: $5.7+3.9,5.7+4.0-0.1$ - Partitioning: using 'near' double: $2.5+2.6$ is double 2.5 and add 0.1 or double 2.6 and subtract 0.1 - Partitioning: bridging through 60 to calculate a time interval: It is 11.45 . How many hours and minutes is it to 15.20 ? - Using known facts and place value to find related facts. Vocabulary tens of thousands boundary, Also see previous years Generalisation Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9 . What do you notice about the differences between consecutive square numbers? Investigate $\mathrm{a}-\mathrm{b}=(\mathrm{a}-1)-(\mathrm{b}-1)$ represented visually. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?	Mental Strategies Consolidate previous years. Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5$; $(20-5) \times 3=45$ Vocabulary See previous years Generalisations Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering. Sometimes, always or never true? Subtracting numbers makes them smaller. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?

$=\square$
Use concrete objects and pictorial representations. If appropriate, progress from using number lines with every number shown to number lines with significant numbers shown.
Understand subtraction as take-away:

Use of bar model to find the difference:

$$
3 \text { Erasers }
$$

The above model would be introduced with concrete objects which children can move (including cards with pictures) before progressing to pictorial representation The use of other images is also valuable for modelling subtraction e.g. Numicon, bundles of straws, Dienes apparatus, multi-link cubes, bead string

able to do in
your head,
with jottings or
using
Things to know
From regular
practice
methods
methods
guidance

Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as _- 9 (please note the equals sign should be used as a balance where the wo sides are equal rather than as 'and the answer is').

Represent and use number bonds and related subtraction facts within 20. Add and subtract one digit and two digit numbers to 20, including zero.

Mental Strategies
dren should experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10.
 experiencing the $=$ sign in different positions.
 this.

Use bundles of straws and Dienes to model partitioning teen numbers into tens and ones.
Children should begin to understand subtraction as both taking away and finding the difference between, and should find small differences by counting on.

Vocabulary

ubtraction, subtract, take away, distance between, difference between, more han, minus, less than, equals = same as, most, least, pattern, odd, even, digit,

Generalisations

- True or false? Subtraction makes numbers smaller

When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.
Children could see the image below and consider, "What can you see here?" e.g
yellow, 1 red, 1 blue. $3+1+1=5$
2 circles, 2 triangles, 1 square. 2
and 3 with straight lines. $5=2+3$
$5=3+1+1=2+2+1=2+3$

Some Key Questions

How many more to make...? How many
How many are leftlleft over? How many have gone? One less, two less, ten less... How many fewer is... than...? How much less is...?
What can you see here?
Is this true or false?

FAR

Missi
11
1
It is valuable to use a range of representations (also see Y 1). Continue to use number lines to model take-away and difference. E.g.

25

The link between the two may be supported by an image like this, with 47 being taken away from 72 , leaving the difference, which is 25 .

The bar model should continue to be used.

Towards written methods

Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers. The numbers may be represented with Dienes apparatus. E.g. 75-42
 mentally, including:
>a two digit number and ones;
a two digit number and ten
>two two digit numbers;
Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100

Mental Strategies

shourd count regularly, on and back, in steps of 2,3,5 and 10. Counting back in tens from any number should lead to subtracting multiples of 10 . Number lines should continue to be an important image to support thinking, for example to model how to subtract 9 by adjusting.

Children should practise subtraction to 20 to become increasingly fluent. They should use the facts they know to derive others, e.g using $10-7=3$ and $7=10-3$ oo calculate $100-70=30$ and $70=100-30$.

As well as number lines, 100 squares could be used to model calculations such as $74-11,77-9$ or $36-14$, where partitioning or adjusting are used. On the example above, 1 is in the bottom left corner so that 'up' equates to 'add'.

Children should learn to check their calculations, including by adding to check. They should continue to see subtraction as both take away and finding the difference, and should find a small difference by counting up.
They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=20+3=10+13$. Vocabulary
Subtraction, subtract, take away, difference, difference between, minu Tens, ones, partition
Near multiple of 10 , tens boundary
Less than, one less, two less... ten less... one hundred less
More, one more, two more... ten more... one hundred more Generalisation
Noticing what happens when you count in tens (the digits in the ones column stay the same)

- Odd - odd = even; odd - even = odd; etc
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number this:

 $$
15+5=20
$$

Some Key Questions
How many more to make...? How many more is... than...? How much more is...? sthis true or false?

Children should make choices about whether to use complementary addition or counting back, depending on the numbers involved.

Written methods (progressing to 3-digits)
Introduce expanded column subtraction with no decomposition, modelled with place value counters alongside the written method (Dienes could be used for those who need a less abstract representation):

or some children this will lead to exchanging, modelled using place value counters (or Dienes):

other.

Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method

Add and subtract numbers mentally, including

>a three digit number and ones (e.g. 345-8)
a three digit number and tens (e.g. 345-30, 345-50),
>a three digit number and hundreds (e.g. 345-200).

To subtract any multiple of ten or five from 100.

Mental Strategies

e . Children should continue to partition numbers in difference ways. They should be encouraged to choose the mental strategies which are most edditiont for the numbers involved, e.g. counting up (difference, or complementary addition for

Calculators can usefully be introduced to encourage fluency by using them fo games such as 'Zap' [e.g. Enter the number 567. Can you 'zap' the 6 digit and make the display say 507 by subtracting 1 number?]
The strategy of adjusting can be taken further, e.g. subtract 100 and add one back
on to subtract 99 . Subtract other near multiples of 10 using this strategy

Vocabulary

Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100 , inverse, rounding, column subtraction, exchange See also Y1 and Y2

Generalisations

Noticing what happens to the digits when you count in tens and hundreds. Odd - odd = even etc (see Year 2)
Inverses and related facts - develop fluency in finding related addition and subtraction facts.
Develop the knowledge that the inverse relationship can be used as a checking method.

Key Questions

What do you notice? What patterns can you see?
When comparing two methods alongside each other: What's the same? What's different? Look at this number in the formal method; can you see where it is in the expanded method / on the number line.

	YEAR 1	YEAR2	YEAR 3
	Children must have secure counting skills- being able to confidently count in 2s, 5 s and 10 s . Children should be given opportunities to reason about what they notice in number patterns. Group AND share small quantities- understanding the difference between the two concepts. Sharing Develops importance of one-to-one correspondence. $15 * 5=3$ 15 shared between 5 Children should be taught to share using concrete apparatus. Grouping Children should apply their counting skills to develop some understanding of grouping. Use of arrays as a pictorial representation for division. $15 \div 3=5$ There are 5 groups of 3 . $15 \div 5=3$ There are 3 groups of 5 . Children should be able to find $1 / 2$ and $1 / 4$ and simple fractions of objects, numbers and quantities.	$\div=$ signs and missing numbers $6 \div 2=\square$ $\square=6 \div 2$ $6 \div \square=3$ $3=6 \div \square$ $\square \div 2=3$ $3=\square \div 2$ $\square \div \nabla=3$ $3=\square \div \nabla$ $\div=$ signs and missing numbers $6 \div 2=\square \quad \square=6 \div 2$ $3=6 \div$ - $3=\square \div \nabla$ Know and understand sharing and grouping- introducing children to the \div sign. Children should continue to use grouping and sharing for division using practica apparatus, arrays and pictorial representations. Grouping using a numberline Group from zero in jumps of the divisor to find our 'how many groups of 3 are there in 15?'. $15 \div 3=5$ serexnuincereynuncura Continue work on arrays. Support children to understand how multiplication and division are inverse. Look at an array - what do you see?	$\dot{\dagger}=$ signs and missing numbers Continue using a range of equations as in year 2 but with appropriate numbers. Grouping How many 6's are in 30 ? $30 \div 6$ can be modelled as: Becoming more efficient using a numberline Children need to be able to partition the dividend in different ways. $48 \div 4=12$ Remainders $\begin{gathered} 49 \div 4 \\ +12 \mathrm{ri} \\ +40 \end{gathered}$ Sharing - 49 shared between 4 . How many left over? Grouping - How many 4 s make 49 . How many are left over? Place value counters can be used to support children apply their knowledge of grouping. For example: $60 \div 10=$ How many groups of 10 in 60 ? $600 \div 100=$ How many groups of 100 in 600 ?
Things to be able to do in your head, with jottings or using manipulables	Solve one step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representationsand arrays with the support of the teacher.	Show that multiplication of two numbers can be done in any order (commutative) and division is one number by another number and can not. Solve problems involving multiplication an division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts including problems in contexts.	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two digit numbers times one digit numbers, using mental methods.
Things to know From regular practice	Count in multiplies of twos, fives and tens.	Recall and use x and \div facts for the 2,5 and 10 times tables, including recognising odd and even numbers.	Continue to recall and use x and \div facts for the 2,5 and 10 times tables and use x and \div facts for the 3,4 and 8 times tables.
Mental methods advice and guidance	Mental Strategies Children should experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10. They should begin to recognise the number of groups counted to support understanding of relationship between multiplication and division. Children should begin to understand division as both sharing and grouping. Sharing - 6 sweets are shared between 2 people. How many do they have each? Grouping- How many 2's are in 6? They should use objects to group and share amounts to develop understanding of division in a practical sense. E.g. using Numicon to find out how many 5's are in 30 ? How many pairs of gloves if you have 12 gloves? Children should begin to explore finding simple fractions of objects, numbers and quantities. E.g. 16 children went to the park at the weekend. Half that number went swimming. How many children went swimming? Vocabulary share, share equally, one each, two each..., group, groups of, lots of, array Generalisations - True or false? I can only halve even numbers. - Grouping and sharing are different types of problems. Some problems need solving by grouping and some by sharing. Encourage children to practically work out which they are doing. Some Key Questions How many groups of...? How many in each group? Share... equally into... What can do you notice?	Mental Strategies Children should count regularly, on and back, in steps of 2, 3, 5 and 10 . Children who are able to count in twos, threes, fives and tens can use this knowledge to work out other facts such as $2 \times 6,5 \times 4,10 \times 9$. Show the children how to hold out their fingers and count, touching each finger in turn. So for 2×6 (six twos), hold up 6 fingers: Touching the fingers in turn is a means of keeping track of how far the children have gone in creating a sequence of numbers. The physical action can later be visualised without any actual movement. This can then be used to support finding out 'How many 3's are in 18?' and children count along fingers in 3 's therefore making link between multiplication and division. Children should continue to develop understanding of division as sharing and grouping. 15 pencils shared between 3 pots, how many in each pot? Children should be given opportunities to find a half, a quarter and a third of shapes, objects, numbers and quantities. Finding a fraction of a number of objects to be related to sharing. They will explore visually and understand how some fractions are equivalent - e.g. two quarters is the same as one half. Use children's intuition to support understanding of fractions as an answer to a sharing problem. 3 apples shared between 4 people $=\frac{3}{4}$ Vocabulary group in pairs, 3s ... 10s etc equal groups of divide, \div, divided by, divided into, remainder Generalisations Noticing how counting in multiples if 2,5 and 10 relates to the number of groups you have counted (introducing times tables) An understanding of the more you share between, the less each person will get (e.g. would you prefer to share these grapes between 2 people or 3 people? Why?) Secure understanding of grouping means you count the number of groups you have made. Whereas sharing means you count the number of objects in each group. Some Key Questions How many 10s can you subtract from 60 ? I think of a number and double it. My answer is 8 . What was my number? If $12 \times 2=24$, what is $24 \div 2$? Questions in the context of money and measures (e.g. how many 10 p coins do I need to have 60 p? How many 100 ml cups will I need to reach 600 ml ?)	Mental Strategies Children should count regularly, on and back, in steps of 3, 4 and 8 . Children are encouraged to use what they know about known times table facts to work out other times tables. This then helps them to make new connections (e.g. through doubling they make connections between the 2,4 and 8 times tables). Children will make use multiplication and division facts they know to make links with other facts. $\begin{aligned} & 3 \times 2=6,6 \div 3=2,2=6 \div 3 \\ & 30 \times 2=60,60 \div 3=20,2=60 \div 30 \end{aligned}$ They should be given opportunities to solve grouping and sharing problems practically (including where there is a remainder but the answer needs to given as a whole number) e.g. Pencils are sold in packs of 10 . How many packs will I need to buy for 24 children? Children should be given the opportunity to further develop understanding of division (sharing) to be used to find a fraction of a quantity or measure. Use children's intuition to support understanding of fractions as an answer to a sharing problem. 3 apples shared between 4 people $=\frac{3}{4}$ Vocabulary See Y1 and Y2 inverse Generalisations Inverses and related facts - develop fluency in finding related multiplication and division facts. Develop the knowledge that the inverse relationship can be used as a checking method. Some Key Questions Questions in the context of money and measures that involve remainders (e.g. How many lengths of 10 cm can I cut from 81 cm of string? You have $£ 54$. How many $£ 10$ teddies can you buy?) What is the missing number? $17=5 \times 3+$ $=2 \times \overline{8}+1$

Formal Written Methods

Continued as shown in Year 4, leading to the efficient use of a formal method. The language of grouping to be used (see link from fig. 1 in Year 4)
E.g. $1435 \div 6$

Children begin to practically develop their understanding of how express the remainder as a decimal or a fraction. Ensure practical understanding allows children to work through this (e.g. what could I do with this remaining 1? How could I share this between 6 as well?)

Multiply and divide numbers mentally drawing upon known facts.
Multiply and divide whole numbers and those involving decimals by 10,100 and 1000.

Revise multiplication and division facts up to 12×12.
Recall prime numbers up to 19 know and use the vocabulary of prime
Recall prime numbers up to 19 know and use the voca

Mental Strategies

hildren should count regularly using a range of multiples, and powers of 10,100 building fluency.
Children should practice and apply the multiplication facts to 12×12

Vocabulary

see year 4
common factors
prime number, prime factors
composite num
short division
square number
inverse
inverse

Generalisations

The = sign means equality. Take it in turn to change one side of this equation using multiplication and division, e.
Start: $24=24$
Player 1: $4 \times 6=24$
Player 2: $4 \times 6=12 \times 2$

Sometimes, always, never true questions about multiples and divisibility. E.g.:

- If the last two digits of a number are divisible by 4, the number will be
divisible by 4 .
- If the digital root of a number is 9 , the
number will be divisible by 9 .
When you square an even number the result will be divisible by 4 (one example of 'proof' shown left)

Revise multiplication and division facts up to 12×12
Recall prime numbers up to 19 know and use the vocabulary of prime numbers (prime and composite [non prime] numbers).

Tontal Strategios

Children should count regularly, building on previous work in previous years. Children should practice and apply the multiplication facts to 12×12.

Vocabulary
see years 4 and 5

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.

Sometimes, always, never true questions about multiples and divisibility. E.g.: If a number is divisible by 3 and 4 , it will also be divisible by 12. (also see year 4 and 5 , and the hyperlink from the $Y 5$ column)

Using what you know about rules of divisibility, do you think 7919 is a prime number? Explain your answer

What do you notice?

What's the same? What's different?

Can you convince me?
How do you know?

